MakerGear M2: The Ultimate Tips & Tricks Guide

Makergear-M2-guide-3D-PrinterThe MakerGear M2 is one of the best 3D printers in its class for its price on the market. Being in 3D printing industry since 2009 with the M2 reaching its 5th generation, the company has gained some decent experience in producing quality products at decent prices.
This printer is ideal for entry and professional level users making it perfect for professionals, hobbyist and tinkers alike.

makergear-m2-speach-bubble

Assembled Printer Version

As indicated the MakerGear M2 can come in two different formats, fully assembled and in a DIY Kit.
If you have purchased the assembled kit, it is important to note that there is still some assembling required before performing your first prints, but nothing too complicated.

What needs assembling?

makergear-m2-assembly-guide

Luckily they are only small easy to fit parts.

  • Filament spool holder: This is simply a protruding arm that is fitted using 4 black screws against the printer’s body. It simply holds the spool in place and allows it to revolve during feeding.
  • Filament guide arm: Above the spool holder is where the guide arm is placed and is fitted using 2 silver screws against the printer’s body. This is were the filament goes through and guides it to the transparent filament guide tube.
  • Transparent filament guide tube: As the name suggests, the filament guide tube is what directs the filament directly to the nozzle for good accurate printing.

Assembling Your MakerGear M2

The DIY kit can be a nuisance in the sense it has to be fully assembled, particularly when we look at the electrics. However, there are several reasons to take this route and here are three of them:

  • Getting a DIY kit is cheaper than buying it fully assembled & pre-calibrated.
  • Pre-assembled printers may not be perfectly calibrated to your requirements, which results in having to determine where any problems are if any.
  • Building your own machine makes you aware of how it works and where potential issues may arise. This particularly will help to determine problems at a faster rate and reduce down time… In short you will be more familiar with your printer.

Due to considerable number of steps involved to assemble the M2 printer, we felt that listing them in text format would occupy a huge chunk of the page, while also making for boring and difficult reading. Therefore we have decided to provide a visual representation on the assembly process through this awesome 4 part series.

Let’s take a look!

Assembly Part 1


Assembly Part II


Assembly Part III


Assembly Part IV


Achieving The Highest Print Quality

Never assume that your printer’s calibration is to your requirements, even if bought fully assembled. Calibration is what gives any machine the ability to function with accuracy and without it, comes potential problems with your finished product.

Want to learn why?

Bed Leveling Calibration

Using the MakerGear Quick Start App, an interactive bed-leveling assistant that enables any user to replicate MakerGear factory calibration standards at home, owners of the 5th generation MakerGear M2 (M2 rev. E) can achieve the convenience of auto-leveling without sacrificing precision. For those with earlier generations of the MakerGear M2, follow the calibration instructions listed below.

More about the MakerGear Quick Start app: http://www.makergear.com/pages/quickstart-application

Bed Leveling Calibration For Older Versions

This obvious by often forgotten step is essential for accurate quality printing. The distance between the nozzle and flat bed needs to be the same throughout the whole surface area of the flat bed. In short the bed needs to be flat in order for the printer to stack the layers evenly, giving the model a decent quality and structure.

bed-leveling-guide-3d-printer

Learn how to calibrate your bed level?

Step 1: Under the bed is a spider and a spider mounting plate attached by screws. The spider mounting plate is attached to the spider with 3 screws. Make sure they are loosely tightened.

Step 2: Raise the bed up within 0.5cm of the nozzle.

Step 3: Get a sheet of A4 paper (80g/m2) and place it in the middle of the flat bed under the nozzle.

Step 4: Now continuing lifting the bed until it and nozzle sandwich the paper. Do not jam it too tight, you want to be able to move the paper so that there is some resistance.

Step 5: Now you want to do the exact same thing, but this time to the four corners of the bed. If you determine there is a bigger gap at one end, then tighten up the corresponding screw to pivot up the bed at that corner.

Step 6: Repeat the process for all corners & the center of the bed until you get the same pull resistance from the paper.

Step 7: Your bed should now be level for an accurate and strong model.

Step 8: It is always a good idea to check for leveling issues, as the screws holding the bed can come loose in time.

That’s it, your bed leveling calibration for your MakerGear is now set. For more details on bed levelling your MakerGear M2 watch this awesome video.

Bed Leveling Calibration For Accurate Printing

Printing Adhesion

The model that is being printed needs to adhere to the glass bed, as any movement during the print would obviously cause issues.
You may have heard of blue tape or hair spray to help adhere the model, however, there may be a better and even cheaper way of doing this.

How exactly?

By using glue sticks such as Elmer’s Disappearing Purple School Glue Sticks that are non toxic and can easily be cleaned off by simply applying hot water. Flow these steps for best results.

printing-adhesion-3d-models

Step 1: Apply two layers of glue on the bed over an area a little bigger than your part being printed.

Step 2: Try to start printing before the glue dries out, this will make sure the model will firmly remain on the bed.

Step 3: Once the printing is finished, allow the glass bed and model to cool. Your print should simply pop off when it cools as it shrinks.

Step 4: Admire your new creation

Step 5: Once the bed cools down enough to be handled simply rinse it under hot water to remove the glue residue left behind, ready for the next print.

Z Endstop Calibration

Correctly calibrating your Z endstop is very important. This is basically the distance from your nozzle to your glass bed and that distance should be about the thickness of a business card – 12pt (0.3048 mm).

adjusting-Z-endstop-3D-printer

Be sure to level your flat bed first before taking the following steps.

Step 1: Use an M4 wrench to loosen the bottom nut of the threaded bolt that controls the positioning on the Z endstop.

Step 2: Now that the bottom nut has been loosened, you can use your fingers to adjust the Z endstop height by twisting the long bolt.

Step 3: Adjust the height until you are able to slide a business card between the nozzle and flat bed. There should be slight friction while still being able to slide the card through without it getting ripped

Step 4: Turn the Z endstop bolt until it activates the Z endstop switch (red LED will light up and then hear a click)

Step 5: Finally use the M4 wrench to tight back up the bottom bolt that was loosened on Step 1

Step 6: Press “Home” in your control program to test the Z endstop location. Wait for the flat bed to position itself relative to the nozzle.

Step 7: Finally get your business card and once again slide it between the flat bed and nozzle whereby you should feel some friction.

Note: You may start to hear a “clicking” sound coming from the extruder stepper motor. This could be because the nozzle is too close to the flat bed causing the filament to clog up at the nozzle as it does not have sufficient gap to fully extrude at the correct rate… see how to clean up nozzles

Too Lazy To Read? Watch This Great YouTube Video - Calibrating Z-Endstop

Belts, Pulleys & Moving Parts

It may seem obvious but all nuts and bolts should be tightened. You may be sure you have done that, but consider that over time things do loosen up somewhat.
So if you are having problems with quality printing, check to see if all nut and bolts are tightened… the first place to check are the fixtures under the flat bed to make sure the bed is not pivoting on itself during printing.

calibrating-makergear-m2-printer

Dust on Filament

Dust particles can be a nuisance and find their way to the nozzle during printing. This happens because the dust finds it way onto the filament which eventually reaches the nozzle when fed through and gets clogged up.

Want to find how to prevent this?

You can create your own DIY dust trap by wrapping a lint-free cloth around the filament using a cable tie (or similar). Be sure not to tie the cloth up too tight as it will restrict the movement of the filament, which in turn will effect your quality of print.
Alternatively you may purchase a device specifically designed to do the exact same job but also lubricates the filament for easy of movement. It is called “Universal 3D-print Filament Filter

universal-filament-filter-cleaning

How To Install The Universal 3D-print Filament Filter? - Watcn This YouTube Video

Keeping Your Filament Moisture Free

Keeping your filament dry is important, particularly with PLA that tends to absorb moisture from the atmosphere. This moisture absorption can cause problems with direct printing which in turn will affect the quality of your print and could even create damage to your equipment.

filament-moisture-issues

What moisture damage on filaments can do?

  • Hot end damage: As moisture builds up the filament swells. The worst case scenario is when the swollen filament reaches the hot end causing it to jam. This jamming may cause permanent damage to the hot end needing replacement
  • Model quality: If you are lucky enough for the filament to feed through your printer without damaging it, you may find your model compromised. The trapped moisture turns into vapors of steam when heated causing bubbling. This interferes with the flow (extrusion) of the filament causing the model to lack in quality and strength.
  • Stringing effect: When the moisture turns into steam, this can cause the extruder to ooze during the ‘travel stage’ and drip plastic on your print, leaving strings of plastic that resembles strands of hair in shape and length. Learn more on stringing effect by checking out our 3D printing troubleshooting guide.

Avid users most likely will buy spools of filament in bulk to save on unit cost and this is where protecting  your spools come into play.

Learn more on combating moisture?

How to prevent your filaments from moisture damage

Step1: Buy vacuum bags (should have a vacuum valve to fit your vacuum cleaner fixture to)

Step2: These bags have a zipper release, so be sure they have a double zipper line to more efficiently prevent air, moisture and dust from coming in.

Step3: Attach the vacuum cleaner nozzle to the bag and suck the air out.

Step4: As these bags cannot indefinitely retain a vacuum and moisture, adding silica-gel packs to the bag will keep moisture at bay.

Note: These bags come in different sizes depending on how many spools you want to put in a bag. They tend to work much better than a plastic box container as there is already air inside the box.

You Get What You Pay For

A rather generic statement, however, I am referring to the filaments here.
You may be tempted to go for the $20 filament and there is nothing wrong with that depending on your requirements. But like everything, there is a reason why some products are cheaper than others and often that is because of inferior quality and lack of quality control.

So how would that effect my print quality?

For example, the cheaper filament may have slight difference in diameter throughout its length, which is susceptible to clogging at the nozzle due to varying quantity of plastic at a given time. If there is too much plastic then the nozzle will clog.

Note: You may start to hear a “clicking” sound coming from the extruder. This is because the gears designed to grab the filament and push it through can no longer do so because of the blockage, so they start to slip which creates the clicking.

Extrusion Calibration

There will always be some discrepancies in the diameter of a filament, but of course getting filaments with the least discrepancies throughout the length is the best option for accurate quality prints.

Even so, these slight discrepancies result in slight inaccuracies of the model in terms of its dimensions. Therefore the solution here is to calibrate your extrusion to make sure your model’s dimensions are printed out exactly to the dimensions on the software.

So how do we calibrate our extrusion?

Step 1: Measure your filament thickness with calipers at several points throughout its length.

Step 2: Take the average reading and enter it as the filament diameter on your slicer software. If using Simplify3D software input this on “Other” tab.

Step 3: Print out a model of a cube. You can download the below cube that is 20x20x2 with 2mm fillet radius.

Calibration Cube Test

Step 4: Before printing, realize the cube is solid. We actually do not want a solid cube, but rather have it without any infill, top or bottom layers. This is because we want to measure the thickness of the cube’s walls…. something we cannot do if solid.

Step 5: Once printed you will get something as shown below. Use the calipers to measure the wall thickness at several points and take the average. For this example, we will say the average thickness is 0.35mm.

extrusion-calibration-makergear-3D-printer

Step 6: Take note of your extrusion multiplier figure. For this example we will say it is 0.9.

Step 7: Check what the actual thickness of the wall should be. In this case it should be 0.4mm.

Step 8: We can see that our printed model’s has a wall thickness of 0.35mm instead of 0.4mm. So we want to calculate a new extrusion multiplier figure for our next print

0.4/0.35 * 0.9 = 1.028

Step 9: Now by setting your new extrusion multiplier to 1.028, you will find your new printed cube will have the correct wall thickness of 0.4mm.

Note: For accurate printing, extrusion calibration will be required for every new filament reel.

Clearing Out Nozzle Clogs: You Might Not Know Is Even There

A clog is often associated with a blockage that is quite extensive. However, some clogs are so minor that you may not even know it is there, but yet, it is enough to drastically effect the quality of your print, both in the quantity and direction the filament comes out.

If you don’t know it’s there, how do you know it exists?

The best way to determine minor clogs is by running your filament through the nozzle. If you notice the filament curling slightly before straightening up again, then you could have an issue.

minor-nozzle-blockage

How to fix the problem?

Step 1: Remove the hot end unit from the M2 printer.

Step 2: Using an adjustable wrench to hold the hot end in place and then use an 11 mm wrench / ratchet to twist the nozzle loose and then remove it.

Step 3: Find any domestic jar with screw-able lid.

Step 4: Pour some acetone in it and then place the nozzle in the jar with acetone. Keep away from any ignition sources as acetone is highly flammable 

Step 5: Screw the lid back on the jar, give it a whirl and set it aside for a day or two (it is always handy to have a spare nozzle)

For more details clearing out your nozzle this amazing video


Software Setup Instruction

MakerGear is compatible with a number of open source software, which are not only free to download and use, but also give you the flexibility to customize the software to your requirements…. something that closed platforms do not let you do legally.

A little more about the software please?

3D Modeling Packages

In order for the printer to print, it needs a 3D model to look at so that it can print it out. These models can either be created by you using a tool such as Blender (which is free) or given to you by your client. Traditionally the 3D file will be in STL format.

3D Slicing Packages

Not only is a 3D package required to create the models, you will need an other software known as a “Slicer” that you hook up to your printer. The slicer is required to convert the STL file into a language that the 3D printer understands. In essence the software will cut up the 3D model into layers, as that is precisely how the printer creates a model.

Below we have listed a full range of 3D packages and slicers that can used. This list comes as is, as we have not had a chance to test them out, but rather provided a list for your consideration to test and find the ones that suit you and your requirements.

3d modeling packages & Slicers

3D PackageFunctionEaseCostOS
123D Catch3D CAD PackageBeginnerFreePC, Android, iOS, Windows Phone
3D Slash3D CAD PackageBeginnerFreePC, Mac, Linux, Web Browser
TinkerCAD3D CAD PackageBeginnerFreeWeb Browser
3DTin3D CAD PackageBeginnerFreeWeb Browser
Sculptris3D CAD PackageBeginnerFreePC, Mac
FreeCAD3D CAD PackageIntermediate FreePC, Mac, Linux
SketchUp3D CAD PackageIntermediate FreePC, Mac, Linux
OpenSCAD3D CAD PackageIntermediateFreePC, Mac, Linux
Blender3D CAD PackageProfessional FreePC, Mac, Linux
CuraSlicerBeginnerFreePC, Mac, Linux
CraftWareSlicerBeginnerFreePC, Mac
Netfabb BasicSlicerIntermediateFreePC, Mac, Linux
RepetierSlicerIntermediateFreePC, Mac, Linux
Slic3rSlicerProfessionalFreePC, Mac, Linux
MeshLabSlicerProfessionalFreePC, Mac, Linux

Best MakerGear M2 Software

As MakerGear personally recommend Simplify3D™ software as a slicer, we will be discussing its set up process.

Step 1: Operating system and systems requirements for Simplify3D™

Simplify3D™ (OS)LinkSystem Requirements
Windows XP (or greater)Get Latest PriceIntel Pentium 4 (or higher)
Mac OS X 10.6 (or greater)""2GB of RAM (or more)
Ubuntu Linux 12.10 (or greater)""
OpenGL 2.0 capable""

Best MakerGear M2 Software

Step 2: Install Simplify3D™. I am going to assume you will know how to do this depending on the operating system you are using.

Step 3: Download the simple, short, straight to the point user guide

Step 4: Watch this brilliant Simplify3D™ review video by 3D Universe. It gives you what you need to know to get started.

Simplify3D™ Software Review

Note: Simplify3D™ is not a free or open source and at the time of writing this costs $149.00.


Health & Safety: Toxins & Fumes

3D printing is a relatively new game and although it is very much accepted that ABS and PLA do produce some toxins (more so ABS) only relatively recently there has been some concern about the long term effects and severity of illnesses that are associated with these toxins.

One of the issues are the ultra fine particles that are produced during the printing process, which are less than 0.1 micrometer. Because of their size, when inhaled, they can enter your lungs and into the blood stream whereby developing inflammation of the respiratory system and creating bronchitis, tracheitis, asthma and in some cases cancer.

toxic-fumes-3d-printer

It is early days before really understanding the full potential effects that these toxins can have on the human body, but either way, it is a matter to take seriously, particularly as the MakerGear M2 is an opened unit.

If you are into a more technical read about the potential dangerous of these hazardous fumes then this Ultra-fine particle emissions from desktop 3D printers goes into a little more depth and is quite interesting

So how to protect from fumes?

This is a hard one to answer definitively and boils down to cost. Many try their own methods of printing next to an open window while having an other window on the other side of the room opened to allow for a through draft to drive the fumes out. However, being next to a window were dust and/or humidity can easily gather on your printer and filament can create problems.

Some would argue building or buying an enclosure with ventilation is the way to go, but there could be some issues with heat build up and may require some calibration to have the heat constant at the desired temperature.

Either way, I would recommend investing some money on an enclosed ventilation system for the sake of your health and your family’s, particularly when using ABS.
There is very little out there on enclosed ventilation, but there is a very interesting product by Kappakit which claim is compatible with all printers.
This product was part of a crowd funding campaign that is currently closed, but it is well worth while contacting them for more information.

Contact: info@kappakit.com

For more details on the KappaKit Protective Fume Hood watch this awesome video

KappaKit Protective Fume Hood For 3D Printers


Support & Resolving Further Issues

Although MakerGear are a small company, their customer support is second to none with respond times within hours and sometimes minutes. You can feel that the main objective for them is customer satisfaction by attempting to immediately fix the problem without the added fluff that many support services add during troubleshooting.
Sometimes diagnosing a 3D printer problem can be a little hard (even with all the available information online). This is particularly true when not having much experience in printing, so having someone there to guide you is always welcoming.

Support email: support@makergear.com

Include:

  1. A detailed explanation of the issue. For eg. Model not adhering well, filament colour and make, printing software used etc.
  2. Your contact info. such as email and phone number so they can reply.
  3. The name of the person who placed the order of the printer and/or the order number.

F.A.Q About The MakerGear M2 

Here we have some of the most common asked questions regarding the MakerGear M2 3D printer which we provide answers to:

How To Change The Filament On The Makegear M2?

The first step is to make sure your hot end is first up to temperature. This very much depends on which hot end you have…for example a temperature of 215 degrees on the V3B is a good temperature for Poly Latic Acid (PLA) filaments.
Cut a “flat edge” at the end of filament using shears or scissors, then place the spool on the spool holder and feed the filament through the guide arm on the side of your machine. Once you have done this, feed the filament through the transparent guide tube and double check your hot end temperature has reached the desired temperature before doing anything else.
The next step is to go to the “Jog Control” panel and extrude “100” twice and insert the end of the filament in the top of the filament drive and feel it feed.
The final step is to click extrude “100” one last time, your MakerGear M2 should now clean out the filament that was there previously, wait a few seconds until your new filament feeds through.

How To Change The Filament On The Makegear M2?

My Makegear M2 Is Not Extruding?

There can be several reasons for your M2 printer to fail extruding.

  • As already mentioned in this guide filaments that have a variation in diameter can effect a steady extrusion and cause a build up of filament in the nozzle which ultimately causes blockage.
  • The hot end and nozzle are attached together snugly. However, in time they may loosen from each other, which interferes with the smooth movement of the filament and causes a build up and ultimately clogging.
  • The nozzle must also be a defined distance from the flat bed. In order for this defined distance to be constant, the flat bed must be perfectly horizontal. Any inconsistencies here (such as the nozzle being too close to the flat bed) would disrupt the flow of filament, creating a build up and therefore a blockage.

Find out how to unclog your nozzle 

Where To Buy A MakerGear M2?

buying-makergear-m2You can buy the M2 from MakerGear directly and from Amazon retailers. Currently there is not much difference in price, however shipping my be cheaper or free with a faster delivery time with amazon.

 

How To Update My Driver To My PC / Laptop?

Mac & Linux users do not have to update any drivers as they have native support for the Makergear M2 electronics.
However, Windows users need to be sure to update the latest drivers so that it recognizes the Makergear printer.

  • Downlaod Windows driver in Zip format
  • Unzip or “Extract All” the zipped file
  • Go to your Windows “Device Manager” and located RAMBo
  • Right hand click “Update Driver Software” > “Browse my computer for driver software”
  • Browse the section where you donwloaded the driver.
  • Click on RAMBo_USBdrivers
  • Click “Next” then “Install”
  • You are set!

Links & Resources

Here are some great resources in addition to this guide.

  • chriscalo1231

    Thank you, I wish I had this guide when I was first putting my Makergear together. The DYI instructions would have been quite helpful! I have to say, once you get it going, it’s great!

    • Hello chriscalo,
      Thanks! Actually the printer guide would have been pretty hard and tedious to read had a created a text guide. Basically, it would have become far too long, particularly when there are things like the electronics to put together…. so I thought I nice video guide by 3DPrinterHowTo (it really is a nice composed video)

  • Delores Lopez

    What a great guide! Thanks for putting all this together in one place, I bookmarked it for later. This is my second 3D printer and it has been good to me so far.

    • Hello Delores,
      Thank you…. I hope it comes to further use. Also, thank you for confirming the Makergear has treated you well.
      Good luck with your 3D printing

  • Martin Lansard

    Awesome guide, thanks for putting this together! I’ve used the M2 for a while and it’s among the most reliable desktop 3D printers I’ve seen so far. I agree on your advice to use an enclosure and air filter.

    • Hey Martin,
      Thanks for this one and the advice on the enclosure and air filters. This is something that I found a little hard in terns of finding information. Not sure why there is not much out there, could it be because people are still not aware of the potential dangers? I would have thought the dangerous are pretty well documented and companies out there would jump on creating a product for 3D printing safety?

  • Good to see safety get a mention. I’m curating 3D printer related safety articles at http://www.scoop.it/t/3d-printing-and-consumer-product-safety and writing on the topic on my website http://www.productsafetysolutions.com.au Thanks 🙂

    • Hello Gail,

      Thank you kindly for your comments.
      I do not normally allow promotion of sites on disqus, but as I suspect, I suggested my article on Scoopit and you were kind enough to give it a mention. And as it is all related to 3D, then I think I will let this one pass :).
      3D printing safety is something that I want to work on a lot more. There doesn’t seem to be that much info on units that reduce or eliminate fumes, or any other alternative methods to prevent breathing in of these fumes.
      Of course the safety aspect is more than just fumes, so if you feel you have any information to share, I would be happy to consider it on this article while giving credit of course.
      Once again thank you for the comments.

  • Very detailed tips and tricks guide on the Makergear M2. You should turn this into an ebook! It would be really helpful for people who are thinking of buying or have an M2. You definitely have the expertise to be a 3Dengr.com guest author.
    Will you be doing guides for other popular 3D printers on your site?

    • Hello 3D Engineer,
      Thank you very much for your kind words regarding my page. I sincerely hope people find it useful.
      Turning my Makergear M2 into an ebook is actually a brilliant idea that I never thought about, a big thank you for that.
      Finally, thank for the expertise comment regarding being an author on 3D Engineer, maybe we can collaborate soon? I have had a look at your site and boy there is masses of great 3D printing information on it….keep up the great work….. and yes, my intention is to continuing creating more guides on popular 3D printers, although I am not limiting it to only guides 🙂